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Previously reported experiments with a self-propelled body submerged in a fluid 
with a stable vertical density gradient have demonstrated that the turbulently 
mixed wake first expands more or less uniformly and then collapses vertically 
while continuing to expand horizontally (Schooley & Stewart 1963). It was also 
shown that the vertical collapse of the wake generates internal waves. Essen- 
tially two-dimensional experiments have also been used to explore some of the 
build-up and decay characteristics of vertical wake collapse induced by a sub- 
merged burst of turbulent mixing (Wu 1969; Schooley 1968). The present paper 
reports new experimental measurements and a linear theoretical analysis of the 
internal wave field created in stratified water by a burst of submerged turbulent 
mixing. The forcing function has been obtained in integral form for an initial- 
value model of wake collapse in terms of a general Brunt-Vaisiila frequency 
profile, using normal mode theory. Numerical results have been determined for 
the specialized case of a completely mixed circular wake in a constant Brunt- 
Vaisiilii profile. These results are compared to the experimental measurements. 

1. Introduction 
The concept of internal wave generation by collapse of a region of density 

stratified fluid which has been mixed has existed for many years and various 
researchers have contributed to the experimental, theoretical or to both sides of 
the problem. Schooley & Stewart (1963) measured the initial phase of collapse in 
the wake of a self-propelled body and demonstrated that wave-like effects 
appeared at  the surface. Furthermore, they convincingly showed that the general 
characteristics of the surface phenomena can be explained by the existence of a 
number of modes of internal waves generated by the wake coIlapse. Their 
analysis, however, was not aimed a t  predicting the amplitude of the internal wave 
motion from features of the initial mixed region. Stockhausen, Clark & Kennedy 
(1966) also made observations relating to wake collapse behind a self-propelled 
body. They were concerned chiefly with the shape of the wake during the initial 
expansion and subsequent collapse and did not analyse their results from the 
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point of view of internal wave generation. Observations on the details of a mixed 
region during collapse in a two-dimensional laboratory model were also taken by 
Wu (1969). The mixed region in this case was formed by stirring a contained 
semi-cylindrical region at one end wall of a tank containing stratified fluid. The 
collapse was simulated by quickly and smoothly removing the containing 
apparatus and allowing the mixed fluid to flow into the stratified fluid. Very 
detailed results were obtained showing the subsequent shape of the mixed region. 
The internal wave patterns associated with the collapse were also determined and 
results giving the phase configuration were obtained. No amplitude information 
was illustrated; however, it was observed that wave heights as large as 0.2 of the 
mixed region radius were formed. 

A wide range of theoretical results have been obtained concerning internal 
waves in general. Most results have been obtained for linear models. A very com- 
prehensive treatment of the problem (for general transient or steady generation) is 
given by Lighthill (1967) and further detailed theoretical work with careful 
experimental verification is given in Mowbray & Rarity (1967). The former is 
concerned with a general treatise of dispersive waves in homogeneous media and 
one section deals specifically with internal waves generated behind a vertically 
moving steady disturbance. Experimental verification of the phase configuration 
is provided. The latter publication provides a complete linear theoretical 
treatment for forced internal waves in a (predominantly) homogeneous medium 
and deals a t  some length with the asymptotic solution of the Cauchy-Poisson 
problem. The observational data provided confirms the theoretical predictions 
regarding phase configurations. No comparison of amplitudes was undertaken. 
Impulsively generated internal waves in the atmosphere have been studied quite 
intensively (Pierce & Posey 1970) but not from the point of view of generation by 
wake collapse. Very recently, a linear theoretical analysis has been performed on 
wave generation by wake collapse (and other causes) by Miles (1970). A non- 
linear numerical analysis of the problem has been undertaken by Wessel(l969) 
with a comparison to  the experimental results of Wu (1969). 

The purpose of the present paper is to outline further experimental results 
concerning waves generated by mixed region collapse and to present a compara- 
tive theoretical analysis, including prediction of amplitudes using a very simple, 
highly idealized linear model. The experiments were performed in a small 
laboratory tank in which a density gradient was created by maintaining a vertiical 
temperature gradient in water and the mixed region was formed by rapidly 
stirring a small part of the fluid. The internal waves were measured by a ther- 
mistor placed near one wall of the tank. Results from four density profiles are 
illustrated. The theoretical model is based on the theory of linear modes and is 
used to predict the subsequent motion due to the internal waves (amplitude and 
phase) in terms of the maximum turbulent expansion of the mixed region. The 
forcing function in this case is composed of the initial buoyancy defect moments 
in the mixed region and is calculated following a scheme originally proposed by 
Lighthill (1964, private communication). Viscous effects are included. 

Since linearized internal wave models are readily amenable to mathematical 
treatment it is believed that this comparison of theory and experiment is doubly 
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valuable - it not only provides a background on which to understand the experi- 
mental results but also provides a useful indication of how detailed a mathe- 
matical model is needed in order to make useful quantitative predictions of 
resulting wave fields. 

2. Discussion of experimental conditions and results 
Figure 1 (plate 1) is a picture of the 'two-dimensional' transparent cell that 

was used, with dimensions 30 cm wide, 7-3  cm deep and 2.5 cm thick and grid 
lines 2 em apart. For the experiments the cell was completely filled with distilled 
water between the bottom and top copper strips. Stable stratification of the water 
(more dense below than above) was produced by cooling the lower copper strip 
and heating the upper one. The amount of cooling and heating was controlled by 
the polarity and amount of electrical direct current applied to commercial 
thermo-electric units (modern Peltier effect devices) attached to the copper 
strips. For efficient and stable operation the unattached surfaces of the 1.1 cm 
thick thermo-electric devices were held at a constant temperature by circulating 
water through jackets as shown in the upper part of figure 1. 

Temperature referred to 4 om depth ("C) 

FIGURE 2. Temperature ws. depth profiles. - -, profile 1 ; - - -, profile 3 ; 
-, profile 4; -.-., profile 6. 

Figure 2 shows four different profiles of temperature vs. depth established by 
using various combinations of electrical current through the thermo-electric 
devices (not all shown in figure 1). For example, profile 2 was established by 
passing 1 0 A  with polarity to cool the bottom and 10  A with polarity to heat the 
top. Profile 3 required 5 A cooling current on the bottom and 5 A heating on top. 
Profile 6 was established with zero bottom current and 2.5 A heating at  the top. 
Profile 4 required 10 A bottom cooling and zero top current. In  this last case there 
was slight cooling at the top because the constant-temperature water circulating 
through the upper water jackets was somewhat cooler than the ambient tempera- 
ture. The cooling was by conduction through the structure of the thermo- 
electric devices attached to the upper copper strip. It took about 2 h after the 
start of current flow for the temperature profiles to stabilize at  the values shown 
in figure 2. (Profiles 2 and 5 are omitted from this report.) 

I1 F L M  5I 
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Figure 3 shows the four temperature profiles of figure 2 converted to four 
corresponding density profiles. The conversion was made using handbook data 
relating pure water temperature with density, together with a reference tempera- 
ture for each temperature profile curve. The horizontal scale is in the ut density 
unit commonly used by oceanographers (Sverdrup et al. 1942). In this case 
a, = (p - 1) x lo3, where p is the water density in g/cm3. The negative abscissa 
values are density expressed in parts per thousand, and density increases from 
left to right. 

-10 -9 -8 -7 -6 - 5  -4 - 3  -2 - 1  0 

at = ( p - 1 ) ~  103 

FIGURE 3. Density (a,) vs. depth profiles. 0-0, profile 1; 
x - - x ,  profile 3;  0-0, profile 4; .---., profile 6. 

For density profiles 1 and 3 the density gradient with respect to water depth, 
du,/dz, is greater at the top and decreases with depth. For profile 6 the density 
gradient is very nearly constant. Profile 4 shows a region where density decreases 
with depth near the top, then a region of approximately zero gradient which 
changes to a region of approximately constant-density gradient near the bottom. 

A prominent feature near the centre of figure 1 is a 1-3cm diameter device 
which is a non-rotatable mixer. A lever system connects it with a drive mechanism 
that will move the mixer forward and backward about 2 1 em ten times in about 
2-2.5 sec on demand. This vigorous back-and-forth movement will generate a 
pulse of turbulence which will first expand and then collapse vertically (Wu 
1969; Schooley 1968). The restoring force is gravity acting on p and du,/dz. It 
is the resulting change in the temperature structure with time after mixing 
which makes it comparatively simple to study the internal wave structure for the 
various temperature or density profiles of figures 2 and 3. 

Figure 1 shows a small thermistor bead projecting about 2.5mm through a 
small hole in the upper copper strip, directly above the mixer. The thermistor 
was connected to a calibrated recording system which yielded a time record of the 
temperature at  this point before, during and after mixing. Since the thermistor 
was used in a manner which was relatively insensitive to velocity it recorded 
temperature changes due to vertical motion of the stratified water at the point of 
measurement. A second thermistor bead is also shown projecting through a hole 
in the copper strip near the centre of the right half of figure 1. Although not visible, 
there are small holes for inserting thermistors at  four different places along the 
copper strip on each side of the centre-line (5). 
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Figure 4 shows the results of experiments. I n  figure 4 (a )  the time scale proceeds 
downward for 40 see after the start of mixing and the horizontal scale measures 
distance from zero at  the centre of the upper copper strip (5)  and proceeds 15 cm 
to the right. The curves represent smoothed processed data from several experi- 
ments using profile 1. The long-dashed curves are regions where the thermistor 
recording system showed positive maximum readings, compared to the situation 
before mixing. The short-dashed curves show regions of negative maximum 
temperature readings. The soIid lines are the regions where the temperature was 
the same as before mixing. 

Distance right of centre-line (cm) 

FIGURE 4. Experimentally determined constant phase lines. (a) Temperature profile 1, 
( b )  temperature profile 3, (c) temperature profile 6, ( d )  temperature profile 4. 

The pattern revealed by figure 4 ( a )  is that of a series of internal waves initiated 
by a pulse of turbulence caused by the 1.3 ern diameter mixer, 4.5 em below the 
upper water boundary and on the centre-line of the experimental cell. To save 
space, only the right half of the internal wave pattern is shown. A similar sym- 
metrical set of internal waves also occurs to the left. At various places in the 
negative and positive regions of the internal waves the approximate amplitudes 
of the temperature deviations are shown. Since the water near the top was warmer 
than that below, a negative temperature indicates an upward component of 
water flow and a positive temperature means a downward component of flow. 
The first convergence due to the vertical collapse caused the strong positive wave 
which grew from about + 0.15 "C near the centre to + 0.5 "C about 7.5 cm from 
the centre. 

Internal wave absorbers were used a t  the right and left ends of the cell (not 
shown in figure 1) in an attempt to  minimize end reflexions. However absorption 
was not complete and quantitative data was not attempted when it was thought 
that reflexion interference might be present. 

Figure 4 ( b )  is the same as figure 4 (a) except that it is for profile 3 instead of 
11-2 



164 A .  H .  Schooley and B. A .  Hughes 

profile 1. In  this case the figure shows experimental points to give an example of 
the amount and consistency of the original data. The temperature gradient is 
less in figure 4 (b)  than in figure 4 (a) and for this reason the initial negative wave 
was too small to be measured. The first wave in figure 4 (b)  is due to the first con- 
vergence caused by the vertical collapse of the initial turbulent divergence. 
The internal waves for the profile 3 condition (figure 4b) are shown to travel more 
slowly than for the stronger temperature gradient profile 1 (figure 4a). 

Figure 4(c) is for the weak and quite linear profile 6. A weak temperature 
gradient makes temperature variations due to the internal waves more difficult 
to measure. However, enough data are available to show that the internal wave 
speed is still less than for the previously discussed stronger gradients. 

Figure 4(d)  shows the internal waves when profile 4 was used. In  this case 
there was a rather weak gradient at the mixer depth with an isopycnal inter- 
mediate region above. At the top the water was slightly colder above than below, 
but apparently not enough to induce convection. The results of the experiment 
show slowly travelling internal waves where the collapse of the initial turbulent 
pulse induces first a negative and then a positive temperature wave. This is the 
reverse of figures 4 (b )  and 4 (c) andis due to the change in the sign of the gradient 
near the top for profile 4 compared to the case for profiles 3 and 6. 

3. Theoretical analysis 
In  this section a theoretical model which is based on the conditions which 

prevailed during the experimentation is discussed. Calculations using this model 
have been made and are presented for comparison with the recorded data. 

A number of simplifying and idealizing assumptions have been used, most of 
which are common to the first-order study of internal waves (e.g. Mowbray & 
Rarity 1967). Besides the usual assumptions of linearity, Boussinesq approxima- 
tion and no molecular diffusion of those properties that define the density, the 
following more specialized assumptions are made : (i) Molecular viscosity is 
included by means of a perturbation expansion, following Dore (1968). This 
assumption will be dealt with more fully later. (ii) The initial disturbance, and 
thus the resulting flow pattern, is strictly two-dimensional. (iii) The initial velocity 
structure is zero. (iv) The end walls are infinitely distant. (v) The analysis, later on, 
is particularized to the case in which the Brunt-Viiisalii frequency is independent 
of depth. It is unfortunate that more information was not available about the 
degree of mixing prior to collapse. However, it  is expected that, at least over the 
area of the stirrer, mixing was virtually complete and any incompleteness was 
near the edge of the mixed region. If this were the case, it would show up in the 
resulting wave field mainly as a deficiency of high-order modes. It will be shown 
below that for the comparison with the experimental data, low-order modes are 
dominant (owing to geometrical coupling and viscous effects). For the present 
problem therefore, the simplest mathematical representation of the initial state 
will be used, namely a perfectly mixed circular region. 

Of all these assumptions, (iii) and (v) are probably the most unlike the experi- 
mental conditions for short-term observations. Initially, and very near the 
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‘edge ’ of the mixed region, all assumptions (except possibly (iv)) are expected to 
break down. However, this breakdown should apply mainly to very short length- 
scales, and since their group velocities are low and viscous damping high they are 
not expected to contribute materially to the flow pattern. Also, the turbulent 
velocity structure existing initially will be most energetic in length-scales less 
than the initial diameter of the mixed region and will be almost completely 
contained within the mixed region; thus the direct coupling between this struc- 
ture and the resulting wave field will be low (especially for waves long compared 
with the initial diameter). 

Non-linearities in the resulting wave field may be important for a short time 
after the beginning of collapse and near the mixed region. An upper estimate for 
the vertical amplitude of wave motion is &a (Wu 1969), where a is the radius of 
the mixed region, thus the ratio of the non-linear terms in the equations of motion 
to a typical linear term is given by Qak, where k is the wave-number of the wave- 
field. From figure 4 and table 1 the largest value of this parameter is 0.35 (profile 1). 
For regions or times removed from the onset of collapse this ‘parameter is 
expected to be substantially reduced (figure 7 (a)  or Wu 1969). 

The position at which the measurements were taken is very near a solid boun- 
dary so there is the possibility of a substantial modification of the inviscid wave- 
pattern by boundary-layer effects. Also, since the Brunt-ViiisalB frequency is of 
order 1 per sec there is the likelihood of appreciable viscous dissipation within the 
body of the fluid and by the walls. It was not expedient to perform a new set of 
experiments (the ones reported here were done some years before the theory was 
undertaken), so instead, these viscous effects are included in the theoretical model. 
To accomplish this, the perturbation scheme given by Dore will be used. It is 
directly applicable to the present problem and so only the results of that investi- 
gation will be used. It is thus necessary to solve only the inviscid equations and 
apply the viscous corrections later. 

With the previously mentioned assumptions, the inviscid equations of motion 

(1) 
are : au aw -+- = 0, 

ax az 

au ap 
p,(z) - + - = 0, 

at ax 

with x horizontal and perpendicular to the axis of the mixed region, z positive 
downwards, p,(z) the density profile before mixing, p the instantaneous difference 
between the total density and po, p the instantaneous difference between the 
total pressure and the hydrostatic head, g the acceleration of gravity, u, w the 
velocity components in the x, z plane, and t the time. The boundary conditions are 

w = 0 at = 0, D for all time, (5) 

w remains bounded as x-+ & 00. (6) 
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The initial conditions are 
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p ,u ,  w = 0 for all x,z (7) 

and P = P o ( Z ) f ( X ,  2). (8)  

(9) 

The problem is amenable to  treatment by a one-sided Pourier transform in 
time. Thus, if 

w = J: e-iwtwjt) dt 

(and similar representations for all the other dependent variables), equations (1) 
to (4) and (8) reduce to the following equation (using the Boussinesq approxi- 
mation) : 

where 

is the Brunt-Viiisiila frequency. 
To reduce the problem further, let 

w = C $fi(z)-%(x), (11) 
n 

where $n(z) is an eigenfunction from an orthonormal set defined by 

and thus 

Since I is a direct representation of the buoyancy at  time zero it must vanish 
outside the initial mixed region. It is also necessary that $ n ( ~ )  be the nth member 
of a complete set; otherwise an integral term (representing a continuous dis- 
tribution of modes) is required on the right-hand side of (11). It is shown by 
Courant & Hilbert (1953) that c # ~ ( z )  is complete if W possesses continuous first 
and piecewise continuous second derivations (in z ) ,  i.e. from (lo), if N (orf) is at  
worst piecewise continuous in z. Thus the solution of (13) satisfying (6) is 

Let the initial mixed region be symmetric in x with its midpoint at  (0, zo) and its 
maximum horizontal extent given by 2a. Then the total wave field exterior to the 
initial mixed region can be obtained from 

J O  

Using the inverse transform to (9), 

where e is chosen to ensure that the integration is below the singularities of 
the integrand. 
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The initial buoyancy function I ( x )  is given by 

where, for a circular, completely mixed region, 

f(x, x )  = (po(zl)/po(x) - 1) H ( X  + a )  ~ ( a  - x )  H(Z - xo + (a2 - x2)*) H(zo - x + (a2 - x2):). 
(17) 

N 

Density, p 

FIGURE 5. Theoretical model of the initial density w8. depth 
through the centre-line of the mixed region. 

Here zo is the depth of the centre of the region, H is the Heaviside unit function 
and po(zl) is the density of the mixed region (see figure 5). 

In terms of the Brunt-Vaisala frequency, 

or, using the Boussinesq approximation, 

The general solution represented by equations (19), (16) and (12) will now be 
restricted to the present experimental case. The density profiles shown in figure 
3 indicate that the approximation N2 = constant should provide most of the 
pertinent features of the internal wave field. With N = N, and x1 = xo, 
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where Jz is the Bessel function of second order. Therefore, interchanging the 
order of integration and summation in (16) (which is permissible by the rules 
governing Fourier series representing generalized functions), 

(23) 

This expression can be simplified by contour integration. For t > 0 it can be 
shown that there is no modification to the value of this integral if the integration 
path is closed by an infinite semicircle in the upper half plane. For t < 0 the 
lower half plane can be used. Thus the value of w arises only from integration 
around the singularities u = & No (in an). Since these are branch points a cut is 
necessary and it is convenient to take the cut along the real w axis between -t No. 
Integration around the branch points produces no contribution, so (23) reduces to 
an integration along the bottom of the cut from -No to +No and an integration 
along the top in the opposite direction. In  appendix A it  is shown that 

d(ai) /d(w2) > 0 

near the real w axis and that this condition together with the condition of 
boundedness at  large 1x1 leads to the restriction that the real parts of w and a, 
must have the same sign for w slightly below the real axis. Therefore, on the 
bottom of the cut a, z 0 for w z 0 and on top an 2 0 for w 0. 

Finally, with e = 0, 

4a2 OD 

D n=l rr) e)I0 (Nt/w2-1)& 
NoJ2(ann/D( 1 - w2/N$) w =  -- sin - cos - 

x sinwt cos (D(Nt ,  nnx ) d o .  (24) 
w2 - l)+ 

For t < 0 there are no singularities. Thus 

w = 0 for t < 0. (25)  

Using the linearity assumption and the transformation w = Nocos8,t the 
amplitude c( = Jwdt) is given by 

4a2 OD 

~sl>a D n=l  
5 =-‘x sin r’) - cos r3) J2 ( G8) cos (Not cos 8) cos ( z 8 )  - 

(26) 
t>O 

This represents the inviscid solution. 

t It can easily be seen that to this approximation 0 represents the angle between the 
vertical and the local lines of constant phase or ‘crest’ lines of that particular frequency 
component. If 0 = 0 the lines of constant phase are vertical and if 0 = 67~ the lines are 
horizontal. 
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To incorporate the most important effects of viscosity it is necessary to return 
to equation (16) and perturb the frequency w in eiWt and to modify 5 to allow for 
boundary-layer effects. The resulting equations are obtained in appendix B. 
Some general characteristics of the form that the internal wave pattern possesses 
will now be outlined. 

The finite depth of the model has resolved the pattern into an infinite series of 
modes. (This situation remains true for an infinite depth if N is piecewise con- 
tinuous and+ 0 as z+co). The horizontal inviscid group velocity of the nth mode, 
Cg,, is given by 

( 2 7 4  -- N~Dsin3~ .  dw No Dn2rr2 
dun (n2rr2+ Dzai)t  - nn 

Cg, = - = 

3 5.0 5’0 - 
0 

-5.0- 
7 0  
2 -5.0 
v 

0’5 b,k Mode4 Mode4 nu-- 
0 

- 0.5 - 1.0 

Mode 3 A A 

@ 0.25 0.2- Mode 1 
0 0 

-0.25 -0.2 - 
I I I 

0 5 10 15 0 2 4 6 8 

( b )  Time in units of the Brunt-VaisiGlii 
period 

(a) Distance in units of D 

FIGURE 6. Illustration of the mode structure of an inviscid internal wave field. The modes 
have been separated to show comparative features: (a)  wave height at an instant as a 
function of distance from the centre-line, Not  = 50; ( b )  wave height at one particular point 
as a function of time from beginning of the collapse, x/D = 2. (For this example: No = 0.25 
sec-l, n = 2.05 cm, D = 7-3 cm, z = 0.3 cm, z,, = 4.5 cm and viscosity = 0.) 

Also, the horizontal phase velocity Cn is 

The maximum group velocity NoD/n (which is the same as the maximum phase 
velocity) increases directly with No. This is in accordance with the experimental 
observation that the wave velocity increases as the density gradient (or No) 
increases. Also, the horizontal extent of the wave-pattern for each mode is limited 
at any instant and at  higher mode numbers the limitation appears nearer the 
centre-line of the mixed region. Within this horizontal limitation a wave-field 
stretching back to the centre-line can exist. 

A stationary phase reduction of equation (26 )  (with No large) indicates that a 
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stationary phase contribution exists for every point within this possible wave- 
field. Equation (27) gives the value of 8 at which the phase of equation (26) 
is stationary for lxl / t  = Cg,. As 1x1 + O ,  O + O ,  the horizontal wave-number 
nn/DtanO+m and o+N, .  Therefore each mode gives rise not to a localized 
group of waves but to a field extending from the centre-line to the limiting 
extent for that particular time. The wavelength within the field increases from 
zero to co over this same region. Figure 6 (a) illustrates this behaviour. 

As a function of time a t  a given position the wave-pattern is essentially zero 
until the most rapid (n = 1) mode arrives (at t ,  say) and exhibits a continuing 
oscillation in time with a frequency rising from zero asymptotically at  No. At 2t 
the second mode arrives and exhibits a similar behaviour in frequency and so on 
for all the modes. This is shown in figure 6 (b) .  

If only one mode is present the wave-field will exhibit dispersion characteristics 
pertaining to that mode. If  more than one mode is dominant, as is true for the 
example used in figure 6, interference effects will also be apparent. 

The damping effects of viscosity are most pronounced for high modes and high 
frequencies (8 "N 0). Waves nearest the centre-line at  any given instant or waves 
appearing at  later times at  any given position are reduced the most. The local 
frequency is also reduced by viscosity. 

All these general characteristics are in agreement with the measured patterns 
shown in figure 4 even though these do not satisfy the condition Not-+co. The 
only major exceptions occur in the vicinity of the initial mixed region. In  figure 
4 (a) the distance between zeros along the 10 see line increases away from the 
centre-line. The same behaviour can be seen in 4 (b )  along the 20 see line. Also, the 
time between zeros along the 5 em line in figure 4 ( b )  decreases towards later 
times (although in figure 4(a) the bottom curves indicate a slight opposite 
tendency). However, not only may asymptotic arguments be expected to fail 
there and viscous effects dominate, but the region 1x1 < a (for all z )  has been 
previously excluded from the domain of applicability of the solution. It is also 
apparent from the measurements that a simple wave field exists, implying the 
presence of only a few modes. 

To accomplish a direct comparison of the theory with experimental results 
the temperature excursion from ambient was calculated using AT = <(dT/dz) 
evaluated a t  z ,  the depth of the thermistor bead, for each profile shown. The 
values used in equation (B 3) are listed in table 1. Each of these values was ob- 
tained from the experimental data. The listed values of No are the averages of the 
Brunt-Vaisalii frequency over the total depth of the tank for each profile. In  
each case the average was calculated from an exponential curve of N ( z )  fitted 
with a least-square technique to individual values of N obtained from figure 3. 
The accuracy of No is estimated at  10%. Maximum vertical expansion of the 
turbulent pulses was determined by dye and cinematography techniques 
(Schooley 1968). One-half the expansion determined a to an accuracy of about 

The values of viscosity listed were obtained from standard handbook tables 
and pertain to the measured values of temperatures: i j  corresponds to an average 
throughout the tank, v corresponds to the value at  the thermistor depth. 

- + 10 yo. 
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It was not expected that mode 1 would be important since it represents fluid 
travelling all up or all down in a given column. Instead the initial buoyancy 
pattern is such that it would couple well into modes which represent a downward 
velocity above zo and an upward velocity below zo. If z were exactly half of D ,  the 
flow would therefore be mode 2 with contributions from the other even ordered 
modes because of the initially round shape. In  fact, in (26) all odd modes do 

dTldz  
Profile a (em) No (see-1) ("C/cm) v (cg4 z (cm) 

1 2.00 1.19 11.1 0.006 0.250 
3 2.05 0.68 3.81 0.009 0.300 
6 2.35 0.41 1.18 0.010 0.325 

TABLE 1. zo = 4-5 em, D = 7.3 cm, V = 0.01 cm/sec2 

vanish under this condition. With the present ratio of zo/D = 0.616 it is expected 
that mode 3 will also be important since the eigenfunction for n = 3 has a zero 
at z /D = 3 .  A large contribution from modes 2 and 3 is apparent in the example 
shown in figure 6. For the calculations used in the comparison with the measured 
data enough modes were included in the summation to ensure stability of one part 
in 103 in the final value of 5. The necessary number of modes ranged from 4 a t  
large 1x1 and <to  30 at small 1x1 and 5. Typically, mode 2 was dominant with some 
substantial contributions from modes 3 and 5.  
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FIGURE 7.  Temperature excursion wa. time. -, theoretical curves; . . ., experimental values. 
The position of each line is in scale with its distance from the centre-line. The distances in 
centimetres are shown above each line. 

The comparison is shown in figure 7. The dotted lines represent measured 
data, the solid lines are the theoretical curves. At least two sets of measured data 
were obtained for each profile. The time origin for the calculated curves has had 
one adjustment for each profile to provide a visual 'best ' fit to the measured 
curves. This is considered permissible because the instant when collapse began is 
not known experimentally. This is because the concept itself is an idealiza- 
tion: collapse can occur during the entire stirring and turbulent expansion 
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interval. Also, a small change in No or any variation in the Brunt-VaisSilii 
frequency with depth will affect the velocity of the waves without appreciably 
affecting their amplitudes, thus effectively producing a difference between experi- 
mental and theoretical time origins. The time shifts actually used are 1.6, 1.6 and 
4.0 see for profiles 1 , 3  and 6 respectively. As in figure 4, the time origin refers to 
the instant the mixer was turned on. For each curve the distance in centimetres 
from the centre-line to the base-line at  which those measurements were obtained 
is shown by the number at the top of each figure. The excursions from the base- 
line represent the temperature deviations from ambient and are scaled at the 
bottom of each figure. For profile 1 the fit is good only for the first wave. After 
that the theoretical curves predict more waves than are experimentally found 

FIGURE 8. Calculated temperature excursions for profile 3 with zero viscosity. The number 
above each line is its horizontal distance from the centre-line in centirnetres. 

(except for the measurements at  12.7 em). Nevertheless the amplitudes of the 
theoretical excursions are very similar to the measurements. For profiles 3 and 6 
the measurements and the theoretical curves are in reasonably good agreement. 

The inviscid solution for profile 3 is shown in figure 8. It can be seen that for 
this scale of motion viscosity is indeed important and over the recorded time 
interval reduces the amplitude of the wave typically by a factor of two. The 
degree of matching between (B 1) and (22) was tested by sample calculations on 
profiles 1 and 6. Equation (B 1) was used in (B 3) with v = 0 (ij $. 0 )  and compared 
with the results for q5n in place of $n in (B 3). Both functions gave the same results 
with differences of about 5 %. 

Equation (26) indicates that the wave amplitude is fairly strongly dependent 
on the radius of the initial mixed region. If a/D -g 1, 

J,(ann/D sin 0) E (anr/D sin O)z x 
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for low mode numbers and low frequencies. In  this case 6.c a4. If the mode number 
of the dominant waves is large enough or the frequency of the dominant waves is 
small enough, or if a/D = O( l), J2(ann/D sin 8 )  is essentially independent of a and 
so <cc a2. 

4. Conclusions 
It has been shown that the internal wave amplitudes generated by the two- 

dimensional collapse of an initially turbulent region can be predicted (at least 
near a boundary) using a highly idealized linear model. The accuracy of the 
prediction is only loosely determined but for these measurements it is approxi- 
mately the same as the experimental scatter. The discrepancy in time of arrival 
of the waves between theory and experiment, as is indicated by the adjustment in 
the time origin of the theoretical values, is believed to be due mainly to two effects: 
variations in the Brunt-Vaislla frequency from the assumed constant profile and 
non-zero mixing time. 

Appendix A 
The eigenvalue a, and the eigenfunction $,(z) are defined by 

and 

(Equation (A 1) is the same as (12) in the main part of the paper.) Differentiate 
(A 1) by w2 and set a$,law2 = $,, 

Multiply (A 3) by $:, the complex conjugate of $,, and integrate over all z ,  then 

Take the complex conjugate of (A l), multiply by $, and integrate over all w.  
Since w is real a, is real, 

and, from (A 4), 

Therefore (da:)/dw2 > 0 and, in fact, since 
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(by A 3), which is greater than 1, dak/dw2 > a i / w 2 ,  This shows that the horizontal 
group velocity is always less than the horizontal phase velocity. 

Let w = w, - ie and a, = a,, + i6. Then for small c,  

However, in order that F ( x )  remains bounded as x-+ & co, 6 must be negative 
(equation 14). Therefore, since E > 0 (equation 16) and dakldw2 > 0, w, and a,? 
must have the same sign. 

Appendix B 
Using the perturbation expansion set up by Dore, equation (20) represents the 

inviscid outer solution to the problem. The lowest order ‘inner ’ solution, near the 
top boundary, is given by 

where v is the local kinematic viscosity. It is also shown by Dore that the fre- 
quency in equation (16) must be replaced by a perturbed frequency up. To second 
order in the expansion 

where V is the average of the kinematic viscosities at x = 0 and z = D. 

taken, an equation for 5 analogous to (26) is obtained. In  a simplified form 
If (B 1) and (B 2 )  are substituted in ( 2 3 )  and the previously outlined steps are 

x [$, cos (w,t) cos (anx) + $isin (w,t) cos (a,x)J dw, (B 3) 

where $, = $r+i$i and up = w,(w)- iwi (w) .  
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